Dealing with anthelmintic resistance in sheep

Theo de Waal - UCD
Outline

- Parasite epidemiology
- How AR develop
- Survey of AR in Irish sheep flocks
- Strategies to minimize development of AR
Parasites of importance

- Gastrointestinal nematodes
 - *Teladorsagia circumcincta* (Brown stomach worm)
 - abomasum
 - *Nematodirus battus* (Thread-necked worm)
 - small intestine
 - to lesser extend *Trichostrongylus* spp & *Cooperia curtecei* (Hairworm/Black scour worm)
 - Abomasum/small intestine depending on species
The epidemiology of nematode parasitism in sheep at pasture
Resistance

Ability of worms in a population to survive drug treatments that generally are effective against the same species/stage at same dose rate

- Genetic changes in
 - Drug target
 - Drug transport (ABC transporters)
 - Drug metabolism
Development of resistance

- Heritable trait
- Inevitable consequence of good nematode control
- Why?
 - Drug eliminate the susceptible genotypes
 - Resistant parasite survive → reproductive advantage and pass on their “resistant” alleles
 - Gradual build-up of resistant genotypes
Resistance clinically evident
Contributing factors associated with AR

- High treatment frequency
- Under dosing
 - Incorrect calibration of equipment
 - Underestimate live weight
 - Improper technique
- Treatment strategies that minimize in refugia population
 - Treat all animals
 - Treat when few larvae are on pasture
 - Early in grazing season
 - Treatment at ecological critical times
 - Treat & move to “clean” pasture
- Lack of quarantine treatments
 - Animal movement disperses resistant worms
- Worm/fluke combinations & ML for ectoparasites at inappropriate times

Refugia = The helminth population not under selection pressure of drug treatments
Background to the problem

- Modern anthelmintics
 - Broad spectrum, very effective, relatively cheap, safe

- Advice
 - Preventative treatment encouraged
 - Resistance issues ignored
 - Conflicting advice
 - Dose & move to “clean” grazing

- Over-dependence on anthelmintics
 - Common sense approaches lost
 - Effective drugs always available
Drug life cycle

<table>
<thead>
<tr>
<th>Drug</th>
<th>Drench Colour</th>
<th>Release</th>
<th>Years until resistance first detected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzimidazoles (BZ)</td>
<td>White</td>
<td>1961</td>
<td>3</td>
</tr>
<tr>
<td>Levamisoles (LM)</td>
<td>Yellow</td>
<td>1970</td>
<td>9</td>
</tr>
<tr>
<td>Macrocyclic lactones (ML)</td>
<td>Clear</td>
<td>1980</td>
<td>7</td>
</tr>
<tr>
<td>Amino acetonitrile derivatives (AD)</td>
<td>Orange</td>
<td>2009</td>
<td>4</td>
</tr>
<tr>
<td>Spiriondoles (SI)</td>
<td>Purple</td>
<td>2010</td>
<td>n/a</td>
</tr>
</tbody>
</table>
Monepantel resistance

Lack of efficacy of monepantel against *Teladorsagia circumcincta* and *Trichostrongylus colubriformis*

I. Scotta,*, W.E. Pomroya, P.R. Kenyona, G. Smithb, B. Adlingtona, A. Mossa

a Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Private Bag 11-222, Palmerston North, New Zealand

b Totally Vets Ltd, 15 Manchester St, Feilding, New Zealand

First report of monepantel *Haemonchus contortus* resistance on sheep farms in Uruguay

América E Mederos1,*, Zully Ramos1 and Georgget E Banchero2

Haemonchus contortus resistance to monepantel in sheep

R. Van den Brom1,*, L. Moll, C. Kappert, P. Vellema

Department of Small Ruminant Health, GD Animal Health, Arnsbergstraat 7, 7418 EZ Deventer, The Netherlands
Anthelmintic resistance survey
Survey AR in Ireland

- **Summer 2012**
 - 20 sheep farms in counties Sligo & Leitrim
 - Treat with BZ, LV or ML

- **Summer 2013 & 2014**
 - Sheep Technology Adoption Program (STAP)
 - Established by DAFM in 2013 to increase productivity on Irish Sheep Farms by encouraging the adoption of best management practices
 - Criteria include attendance at 4 discussion group meetings and the completion of 2 technical tasks
 - 1 of the technical tasks involved testing anthelmintic treatment efficacy (STAP Task 3)
 - Drug routinely used in flock
FECRT - Resistance

Ability of worms in a population to survive drug treatments that generally are effective against the same species/stage at same dose rate.

Resistance is present if:

1. the percentage reduction in egg count is less than 95% and
2. the lower 95% confidence level is less than 90%.

If only one of the two criteria is met resistance is suspected.
Results: 2012 AR - Nematodes

FECRT Sligo-Leitrim Study group (2012)
Popularity of the various drug groups in Sheep Technology Adoption Program
Results

Efficacy of BZ, LEV and ML

- BZ (n = 207): 29% Efficacy ≤ 94, 71% Efficacy 95 - 100
- LEV (n = 105): 56% Efficacy ≤ 94, 29% Efficacy 95 - 100
- ML (n = 212): 71% Efficacy ≤ 94, 29% Efficacy 95 - 100

Efficacy: 95 - 100 Efficacy: ≤94
Results
Prevalence of resistance/treatment failure

Efficacy test

% failure/resistance of treatment

STAP
FECRT
MALDT
Drenchrite
FECRT NI

BZ
LM
ML

Efficacy test
Anthelmintic resistance in European

Worrying trends
Flocks reduced efficacy to different anthelmintic drug classes: Sligo & Leitrim

Fig. 1. Model simulation outputs for scenarios 1–3 (initial resistance allele frequency DQL = 0.0001 and ML = 0.165). Resistance allele frequencies for a new anthelmintic class (DQL) administered to lambs twice per season under a SCOPS management strategy as a single active sequentially (---) or by annual rotation (----------) and as a multiple active (DQL–ABA) product (---).
Fig. 2. Model simulation outputs for scenarios 4–6 (initial resistance allele frequency DQL = 0.0001 and ML = 0.165). Resistance allele frequencies for a new anthelmintic class (DQL) administered to ewes at turnout and lambs five times per season under a non-SCOPS management strategy as a single active sequentially (---) or by annual rotation (.........) and as a multiple active (DQL–ABA) product (———).
Example of additive effect of a multiple active product

- Drug 1 - 90% efficacy
- Drug 2 - 95% efficacy
- Worm population = 1000
- Drug 1 kills 90% of worms
 - Remaining worm population = 100
- Drug 2 kills 95% of worms
 - Number of worms surviving both drug treatments = 5
- Overall efficacy = 99.5%
Example of additive effect of a multiple active product

- Drug 1 - 90% efficacy
- Drug 2 - 95% efficacy

Overall efficacy = 99.5%
Delaying anthelmintic resistance
Best practice

- Maintain large *in refugia* helminth population
- Reduce dependence on anthelmintics
- Targeted (selective) treatment
- Genetic Selection
- Pasture Management
Targeted (selective) treatment

- Level of parasite control not the same for all animals
 - Parasites over dispersed
 - 80:20
 - Resilience & resistance
 - Breed variation
 - Targeted (selective) treatment(*)
 - Old idea rediscovered
 - Treat only when required
 - Whole flock: based on knowledge of the risk/parameters that quantify the severity of infection
 - Individual animals within the grazing group

Targeted (selective) treatment

► Treatment indicators

► Pathophysiological indicators - faecal consistency (dag scores), anaemia (FAMACHA)

► Faecal egg count, weight gain, milk yield and body condition score

► Significant diagnostic needs!
Genetic selection

- Data suggesting breed differences in natural resistance to nematode infection
 - Heritable

- Research in Ireland
 - Greater level of resistance in Texel breed over Suffolk
Texel : Suffolk

- Texel a consistently lower faecal egg count and higher serum nematode-specific antibody responses compared to co-grazed Suffolk

Genetic selection

- Benefit
 - Lower worm burdens
 - Decrease pasture contamination
 - Fewer anthelmintic treatments
Grazing management
“Safe” pastures

Spring
- New leys / seeds or forage crops
- Pasture grazed by cattle only previous season
- Grassland used for conservation previous year
- Pastures grazed by adult non-lactating sheep previous year

After late June
- Aftermath not grazed by sheep earlier in the year
- Pastures grazed by cattle in 1st half grazing season
- Pastures that was clean at start of season and grazed by adult non-lactating sheep only in spring

Reduce parasite burden
Managing multiple-active resistance

- Challenging - no single, simple one-stop solution*
- Resistance irreversible
- Combination anthelmintics & leaving some lambs untreated
 - Resistance develop slower than under annual rotation
 - Efficacy of both actives <70%, ability to slow development of resistance is largely lost
- “Exit drench”
 - Single treatment - new anthelmintic class - in late summer
 - remove resistant genotypes
 - Maintain *refugia* - minimise treatment of adult sheep
- Maximise integrated grazing
 - Alternate graze cattle/sheep
 - Bioactive forages#
 - high in condensed tannins

Conclusions

- Anthelmintic resistance becoming serious concern in Ireland
- Some farms already triple-resistant
- Encourage sheep farmers to test for AR
- Important to know efficacy of drugs used on the farm
 - Without this knowledge
 - Adequate worm control may not occur
 - Sensible drug rotation cannot be planned
- Follow best practice
Helminth control: Best Practice

- Quarantine treatment on arrival
 - 48 hours
 - Turned onto contaminated pasture
- Correct drench technique & right dose
- Test for resistance
- Examine control strategy
 - reduce treatments
- Reduce dependence on anthelmintics
 - Grazing management, use resistant rams
- Only treat when necessary
 - Pathophysiological markers, FEC, Performance indicators
- Use most appropriate anthelmintic
 - Preserve new generation anthelmintics
- Preserve susceptible worms
 - Leave some (10-15%) sheep untreated
 - Treat few days before moving

http://www.nationalsheep.org.uk/
Acknowledgements

- Teagasc
 - Barbara Good; Orla Keane - Farmers
- Walsh Fellows
 - Thomas Patten
 - Paula Kelly
 - Brendan Conneely
 - Jason Keegan

Funding Agencies

- European Union
- Teagasc - Walsh Fellowship Programme